Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination
نویسندگان
چکیده
منابع مشابه
Machine Learning Methods for Quantitative Analysis of Raman Spectroscopy Data
The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance for law enforcement agencies. This paper explores the use of Machine Learning (ML) methods in comparison with standard statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into two sub-tasks, data reduction a...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملRaman spectroscopy: Molecular discrimination imaging
In recent years, label-free threedimensional microscopy techniques based on Raman scattering — the absorption and emission of light from the vibrational and rotational states of molecules — have attracted much attention for their promise of molecule specificity and subcellular spatial resolution. However, there exists a severe trade-off between the achievable imaging speed and spectral selectiv...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDiscrimination of olives according to fruit quality using Fourier transform Raman spectroscopy and pattern recognition techniques.
Fourier transform Raman spectroscopy combined with pattern recognition has been used to discriminate olives of different qualities. They included samples of sound olives, olives with frostbite, olives that have been collected from the ground, fermented olives, and olive samples with diseases. Milled olives were measured in a dedicated sample cup, which was rotated during spectrum acquisition. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2020
ISSN: 2045-2322
DOI: 10.1038/s41598-020-78159-8